Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ying-Ying Liu, Jian-Fang Ma* and Ji-Cheng Ma

Department of Chemistry, Northeast Normal University, Changchun 130024, People's
Republic of China

Correspondence e-mail:
jianfangma@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.044$
$w R$ factor $=0.087$
Data-to-parameter ratio $=17.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
4-(2-Hydroxybenzylideneamino)acetophenone thiosemicarbazone

The title compound, $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}$, is a potential O, N, S tridentate donor ligand. The molecule is non-planar, with the salicyaldehyde benzene ring, the 4 -aminoacetophenone benzene ring, and the thiosemicarbazide group being slightly twisted with respect to each other. There is an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond between the hydroxyl group and the adjacent imine N atom.

Comment

Research on the reactions of thiosemicarbazones with transition metals has increased steadily for many years due to their variety of biological activities, such as antitumor, antiviral and fungicidal (Kang et al., 1997; Ackerman et al., 1999). Much attention has been devoted to the synthesis of new thiosemicarbazone ligands (Liu et al., 2003; Dinçer et al., 2005). In this work, a new thiosemicarbazone ligand, (I), has been synthesized and its structure studied in detail.

(I)

The molecular skeleton of (I) is non-planar; the dihedral angles between the 4 -aminoacetophenone benzene ring and the salicylaldehyde benzene ring, and between the 4 -aminoacetophenone benzene ring and the thiosemicarbazone unit are 6.8 (2) and 21.3 (2) ${ }^{\circ}$, respectively. The thiosemicarbazone unit is almost planar, with a maximum deviation of 0.202 (2) \AA for atom S1 (Fig. 1). According to previous work, there is thione-thiol tautomerism of the thioamide $-\mathrm{NH}-\mathrm{C}=\mathrm{S}$ functional group (Tian et al., 1997). The distances C16-S1 and C14-N2 (Table 1) are 1.680 (2) and 1.287 (2) Å respectively, similar to those found in analogous thiosemicarbazone compounds with a thio-keto tautomeric form (Vrdoljak et al., 2005). There exists an intramolecular hydrogen bond between the hydroxyl group and the adjacent imine N atom (Table 2 and Fig. 1).

Experimental

Compound (I) was obtained in two steps. Firstly, thiosemicarbazide $(0.911 \mathrm{~g}, 10 \mathrm{mmol})$ dissolved in hot ethanol $(20 \mathrm{ml})$ was added to a
solution of 4 -aminoacetophenone ($1.352 \mathrm{~g}, 10 \mathrm{mmol}$) in hot water $(30 \mathrm{ml})$. Two drops of acetic acid was added to the reaction mixture. After refluxing for 2 h on an oil bath, the mixture was cooled to room temperature. The product, aminoacetophenone thiosemicarbazone, was collected by filtration and washed with ethanol, dried in air (yield $85 \%)$. A mixture of salicylaldehyde ($0.611 \mathrm{~g}, 5 \mathrm{mmol}$) and aminoacetophenone thiosemicarbazone ($1.042 \mathrm{~g}, 5 \mathrm{mmol}$) in absolute methanol (40 ml) was then stirred at 323 K for 2 h . The resulting orange solid (I) was filtered off and washed with ethanol. Crystals suitable for X-ray diffraction study were obtained by slow evaporation of a DMF solution (yield 78\%).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS} \\
& M_{r}=312.39 \\
& \text { Monoclinic, } P 2_{6} / n \\
& a=5.582(11) \AA \\
& b=23.835(5) \AA \\
& c=11.773(2) \AA \\
& \beta=90.93(3)^{\circ} \AA \\
& V=1566(3) \AA^{3}
\end{aligned}
$$

Data collection

Bruker APEX CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.89, T_{\text {max }}=0.95$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.087$
$S=0.82$
3577 reflections
211 parameters

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

C1-O1	$1.359(2)$	C16-N3	$1.366(3)$
C7-N1	$1.284(2)$	C16-S1	$1.680(2)$
C14-N2	$1.287(2)$	$\mathrm{N} 2-\mathrm{N} 3$	$1.380(2)$
C16-N4	$1.334(3)$		
N4-C16-N3	$115.9(2)$	$\mathrm{C} 14-\mathrm{N} 2-\mathrm{N} 3$	$119.27(19)$
N4-C16-S1	$122.55(19)$	$\mathrm{C} 16-\mathrm{N} 3-\mathrm{N} 2$	$118.21(18)$
N3-C16-S1	$121.51(17)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 18 \cdots \mathrm{~N} 1$	$0.898(16)$	$1.722(18)$	$2.559(3)$	$154(2)$

Figure 1
A view of the molecule of (I). Displacement ellipsoids are drawn at the 30% probability level. (Sheldrick, 1990).

All C-bound H atoms were positioned geometrically and refined as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})$ values of 1.2 or 1.5 times $U_{\text {eq }}(\mathrm{C})$. The amino and imine H atoms were located in a difference Fourier map and refined with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{N})$. The hydroxyl H atom was located in a difference Fourier map and refined with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

We thank the National Natural Science Foundation of China (No. 20471014), the Program for New Century Excellent Talents in Chinese Universities (NCET-05-0320), the Fok Ying Tung Education Foundation, the Science Foundation for Young Teachers of NENU (No. 20050310) and the Analysis and Testing Foundation of Northeast Normal University for support.

References

Ackerman, L. J., Fanwick, P. E., Green, M. A., John, E., Running, W. E., Swearingen, J. K., Webb, J. W. \& West, D. X. (1999). Polyhedron, 18, 27592767.

Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
Dinçer, M., Özdemir, N., Çukurovalı, A. \& Yılmaz, İ. (2005). Acta Cryst. E61, o880-883.
Kang, Y., Yang, N., Kang, S. O., Ko, J., Lee, C. H. \& Lee, Y. H. (1997). Organometallics, 16, 5522-5527.
Liu, L., Jia, D. Z., Ji, Y. L. \& Yu, K. B. (2003). J. Mol. Struct. 655, 221-227.
Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Góttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tian, Y., Duan, C., Zhao, C., You, X., Mak, T. C. W. \& Zhang, Z. (1997). Inorg. Chem. 36, 1247-1252.
Vrdoljak, V., Cindrić, M., Milić, D., Matković-Čalogović, D., Novak, P. \& Kamenar, B. (2005). Polyhedron, 24, 1717-1726.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

